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• In part I of this Core Matter we showed that integrating ma-

chine learning signals as an additional input layer into an al-

ready existing and proven tactical asset allocation process 

added value. 

• So far, we mechanically applied the signals according to the 

chosen overlay strategy, thus accepting the ‘black box’ ma-

chine learning is widely associated which. That said, there is 

scope to shed light into that box.  

• The algorithm that is used in our model is called: k-Nearest-

Neighbours. Based on macroeconomic timeseries data, our 

signals are designed as a weighted majority vote amongst 

the representatives in the neighbourhood of the current query 

point i.e., the algorithms identifies periods in the past that are 

most similar to the current one. We can take this information about the neighbourhood from the model to contrast it with our 

own intuition or put it into a historical perspective by comparing it to past forecasts. 

• The darker part of the box is the identification of the drivers behind the model’s choice. It is not directly related to the k-

Nearest-Neighbour algorithm itself but to one step in the data pre-processing. The model’s choice is not directly based on 

the initial data but on a reduced number of (Kernel-based) principal components without knowing anything about their com-

position. We “unmask” the so-called Kernel-Trick and are thus able to map the model’s choice back to the initial data. 

• There is always a need to critically review pure model  results. Hence, with the knowledge of the structure of the neighbour-

hood and the main drivers that led to its choice we offer a complete set of analytics allowing for a human valuation of the 

machine learning signals.  
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1. Basic idea and motivation 

In part I of this Core Matter we showed how machine learning 

(ML) techniques aiming at forecasting the upcoming market 

regimes from freely available data can add value to a tactical 

asset allocation (TAA) process of a simplified portfolio con-

sisting of US Treasuries and US equities. We explained how 

to tailor the ML training setup to ensure a smooth integration 

into an existing TAA approach. We concluded with back-test-

ing the results showing the added-value of ML-enhanced TAA 

process versus a traditional one. 

ML is very often associated with a black box. Thus, there 

seems to be an intrinsic field of tension between the applica-

tion of machine learning signals and the healthy human scep-

ticism towards any black box. 

Confidence in any kind of model results is cru-

cial 

Confidence in any kind of model results is crucial when it 

comes to applying them i.e., making decisions based on 

them. In that respect, we try to reduce the tensions and raise 

the confidence by taking a glimpse behind the scenes of the 

signals produced by the ML algorithm. We give the users of 

the model as much background information as possible to en-

able them to qualitatively value each signal derived by the 

model. 

The extent to which this is possible depends on several fac-

tors. First, of course, there is the algorithm itself. Second, al-

gorithm-independent data pre-processing steps also turn out 

to distort the view of the essential.  

In the following, we take a closer look at the underlying struc-

ture of the signals and the driving forces behind them. Based 

on that, we present some standard analyses of the model we 

can provide to the user.  

2. The model specification 

The terms artificial intelligence (AI) and machine learning are 

widely and wrongly used synonymously. Likewise, the asso-

ciation of ML with a black box is exaggerated. 

ML covers lots of algorithms ranging from deep neural net-

works to linear regressions. Not all of them are equally 

opaque. 

Not all ML algorithms are equally opaque 

The algorithm that is used in our model, the so-called k-Near-

est-Neighbours (kNN) algorithm, allows for a more detailed 

glimpse behind the scenes. 

2.1 The kNN algorithm 

The kNN algorithm is a so-called (a) supervised (b) instance-

based (c) classifier. 

(a) Supervised: the so-called ground truth i.e., the ac-

tual outcome is known in the training phase (in our 

case the market regime we want to forecast) 

(b) Instance-based: the current instance (in our case 

observation i.e., month) of the data is compared with 

past instances of the data to produce a signal. In par-

ticular, there is no explicit generalization in a sense 

that an underlying functional relationship is esti-

mated. 

(c) Classifier: producing a signal means categorizing 

the current instance into a set of classes (in our case 

1 (EQ) if equities are expected to outperform bonds 

or 0 (GV) vice versa) 

The algorithm is non-parametric i.e., no assumptions about 

the distribution or level of measurement of the data are made. 

The only assumption needed is that similar instances (past 

observations) belong to similar classes (market regimes i.e., 

months in which equities outperform govies or vice versa).  

https://insite.generali.com/file/view-535216546
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Based on selected features (in our case monthly macroeco-

nomic timeseries variables), the kNN signal is designed as a 

majority vote amongst the representatives in the neighbour-

hood of the current query point i.e., assigning the class which 

has the most representatives. In the graph of the cover page 

 
1 E.g., let the big orange dot represent the current query point or instance. 
Identify the five nearest past instances as the neighbourhood. Perform 
the majority vote amongst the representatives in that neighbourhood: 3x 

EQ and 2x GV ⇒ signal = EQ. 
2 https://scikit-learn.org/stable/modules/neighbors.html#nearest-neigh-
bors-classification 

the basic principle is shown for two features and five past in-

stances1.  

kNN: a simple but versatile and effective clas-

sifier  

“Despite its simplicity, nearest neighbours has been success-

ful in a large number of classification and regression prob-

lems, including handwritten digits and satellite image scenes. 

Being a non-parametric method, it is often successful in clas-

sification situations where the decision boundary is very irreg-

ular.”2 

There are just two parameters which are optimized in the 

training phase via so-called hyperparameter tuning3. Firstly, 

the number of neighbours to be considered in the voting and 

secondly if and how the distance of the representatives in the 

neighbourhood shall be considered in voting i.e., the shorter 

the distance the higher the weight in the voting4. In our case 

the optimal combination turned out to be a  weighted5 voting 

amongst eleven neighbours. 

With the neighbours being the core of the signal, it is straight-

forward to extract and scrutiny them. Yet to apply some qual-

itative valuation to the neighbourhood, we also need to iden-

tify the features that led to this choice. This turns out to be far 

less straightforward. 

2.2 Kernel PCA 

In general ML algorithms suffer from the so-called “curse of 

dimensionality”. Simply stated, this means that the amount of 

data points needed to make the model learn accurately is 

3 In ML hyperparameter tuning refers to the process of finding the optimal 
parameter setup for a given algorithm. 
4 For a formal representation of the algorithm s. grey box on this page.   
5 The standard Euclidean distance is used to weigh the classes of the 
neighbours. 

The kNN algorithm 

The algorithm itself is performed on a given number of 

neighbours k. The optimal value for k is determined via 

hyper parameter tuning in the training phase of the 

model. 

The choice of the neighbours is based on the standard 

Euclidean distance. 

Let p be the number of features. Let x denote an in-

stance with (x1, x2, …, xp) i.e., the input variables ob-

served at a given point in time. The standard Euclidean 

distance between two instances x and x’ is defined as:  

.d(x, x' ) = √∑ (xi - x'i)2
p

i   1
 

Let D denote the set of all instances and Sx the set of 

the k nearest neighbours of instance x with (x1, x2, …, 

xk) each of which assigned with a class c: 

 x  ⊆ D s.t. | x|   k and 

∀(x', c' ) ∈ D\Sx, d(x, x' ) ≥ max
(x'', c'' ) ∈ Sx

d(x, x'' ) 

I.e., for any instance x’∈ D and ∉ Sx the distance to any 

instance x in the neighbourhood Sx is larger than the 

largest distance within Sx. 

Given a function m() that performs a binary mapping for 

each class c in the neighbourhood’s classes  ’’ defined 

as: 

.m( ,  '')   {
 1 if c''   c

 0 other ise
 

In case of the standard Euclidean distance used as a 

weighting function, the classifier h() can finally be de-

fined as: 

.h(x)   arg  max
c

∑
1

d(x, x'' )

k

j   1
 m(c, c'')  
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exponentially increasing as the number of features increases. 

In case of kNN it can be shown that with a growing number of 

features i.e., dimensions, the only assumption made6 can no 

longer be maintained.  

 
6 Similar instances belong to similar classes. (see page 2) 
7 Compared to standard PCA Kernel PCA improved the results signifi-
cantly. Feature selections directly aiming at identifying the best combina-
tion of a prespecified number of features proved computationally not fea-
sible. 
8 The optimal number of PCs is evaluated within the model training. 
9 See chart on the previous page which gives an extreme yet illustrative 
example. It is impossible to draw a line in the left sub-chart that separates 

In fact, it can even be shown that the distribution of the dis-

tances collapses to an extremely small and thus little repre-

sentative range. 

Hence, dimension reduction is a standard data pre-pro-

cessing step in ML. In our case principal component analysis 

(PCA) turns out to be the most efficient way to reduce the 

dimensionality, more precisely, Kernel-PCA7.  

Roughly speaking, PCA aims at the revelation of data inher-

ent dependencies. It reduces the dimensionality by identifying 

orthogonal principal components (PCs) that are linear combi-

nations of the original features. In doing so, a sufficiently large 

share of the variance in the original data can be explained by 

a distinctively smaller number of PCs. In our case nine PCs 

were extracted8 out of 82 input features.  

Standard PCA is a linear approach. But, very often, like in our 

case, the data classes (EQ, GV) are not linearly separable in 

the original feature space. Via Kernel transformation addi-

tional dimensions are added, thus achieving linear separabil-

ity in the transformed, higher dimensional, feature space. Pro-

jecting this back to the original features leads to a non-linear 

separation.9  

Applying a non-linear transformation to the data before per-

forming the PCA is computationally extremely costly. Thus, it 

is infeasible to do so in the training phase of the model, where 

thousands of specifications must be calculated to figure out 

the optimal parameterization.  

the red dots from the grey triangles. Adding a 3rd dimension as the sum 
of the squared original features allows for linear separation by construct-
ing a two-dimensional plane between the dots and the triangles (s. right 
sub-chart). Projecting the plane back to the original feature space leads 
to the dashed circle which is of course non-linear and perfectly separates 
the dots from the triangles.   

(Kernel) PCA 

Mathematically, PCs can be extracted through an eigen-

decomposition of the covariance matrix Σ of the centred 

(de-meaned) data X: 

.Σ   cov(X) ≡ 
X

T
X

n
  ith X ∈ ℝn×p 

with n instances (observations) and p features (varia-

bles). The ith PC is given by solving the following equa-

tion for ei: 

.Σei   λiei  s.t. ‖ei‖   1 

with ei being the unit length ith eigenvector and λi the ith 

eigenvalue of X. PCs are extracted for λi sorted in de-

scending order. Projections of X onto the PCs can be 

derived by calculating the dot product between a de-

meaned instance x and the desired eigenvector ei. 

Kernel PCA applies a non-linear transformation Φ to the 

data X i.e., it maps it to a higher dimensional space, be-

fore doing the eigendecomposition: 

ϕ(X) : ℝp →  ℝm  ith m ≫ p 

 ut, instead of directly applying Φ to the data X the 

transformation is performed through a pairwise applica-

tion of a corresponding Kernel κ to all instances x, the 

so called Kernel-Trick: 

.κ(x, x')   ϕ(xTx') 

which results in the symmetric kernel matrix Κ ∈ ℝ × . 

By applying an eigendecomposition to a de-meaned 

version of Κ, PCs can be extracted like above. However, 

as the covariance matrix of Φ(X) is not calculated ex-

plicitly, no principal component axes are yielded. That 

said, the resulting eigenvectors already represent the 

projections of the data X onto the respective PCs. 
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The Kernel-Trick: blessing and curse at the 

same time 

The solution for this dilemma is the so-called Kernel-Trick10 

which allows to pass on the transformation of the original data 

and to directly operate in the low-dimensional PC space. The 

blessing is: you do not even have to know the transformations 

which is indispensable in case their number is infinite11. At the 

same time, it is a curse, as not knowing the transformations 

also means not knowing anything about the composition of 

the PCs. Thus, in that respect, Kernel-PCA is a black box. 

In our case, the best Kernel turned out to be a polynomial of 

degree three i.e., the number of transformations, though 

large, is at least finite12. Furthermore, we only want to analyse 

the composition of the PCs for selected signals.  

We “un ind“ the Kernel-Trick by applying the transformation 

represented by the kernel directly to our input data. In a sec-

ond step, we perform standard PCA on this transformed data. 

Now we do have the full information about the compositions 

of the PCs that we map back to the original features (see chart 

on previous page). Hence, we are enabled to figure out the 

economic drivers behind the choice of the neighbourhood and 

thus of the final signal. 

3. Decomposing the signals 

So far, the signals stemming from the ML model were just 

ones (EQ or equities preferred over next month) or zeros (GV 

or government bonds) and the user was faced with a take it 

or leave it situation. But, given the findings from the previous 

chapters, we can now start to decompose the signals and an-

alyse its key drivers in terms of variables. 

3.1 The neighbourhood 

The HeatMap on the right shows the structure of the neigh-

bourhoods behind the ML signals over the past two years. 

The neighbours are sorted vertically by proximity (Euclidian 

distance) with the nearest neighbour in the lowest row. The 

age of the neighbours i.e., the time distance, is represented 

by the colour shading. Red neighbours are young and blue 

neighbours old. 

Particularly until July 2022 we find quite some very old neigh-

bours, partly 35 years old or even older. This might be 

 
10 For more details about Kernel-PCA and the Kernel-Trick see grey box 
on previous page.. 
11 E.g., this is true for the for the Radial Base Function (RBF), a kernel 
which projects into an infinite dimensional space. 

considered a bit surprising at the first moment as we are an-

alysing timeseries data.  

Proximity and age do not necessarily coincide 

That said, as the data passes through a series of pre-pro-

cessing steps before entering the algorithm, including 

detrending and standardization, the chances for each past 

observation to be included in the neighbourhood are equal.  

Taking a closer look at the favourite neighbours (see Word-

Cloud below), it is obvious that some neighbours are more 

preferred than others. For the possible (11 neighbours x 24 

months =) 264 places, just eighty-one candidates were finally 

selected, with a clear preference for spring / summer 2007 

and the end of 2006. The two most popular neighbours of the 

last two years (2007-05, 2006-11), although not on top ranks, 

are also found in the neighbourhood behind the current ML 

signal (the forecast period ending mid-February 2024). 

12 Even just a polynomial of degree three already boosts the number of 
features from 82 to 98.770 (see chart on previous page). 
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3.2 The drivers 

So far we just looked at the structure of the neighbourhoods, 

i.e., we know which past observations have been picked as 

the most similar ones to the current query point. Yet we still 

do not know in which aspects these instances are similar. 

In any case, similarity cannot be measured directly through 

the features but only indirectly through the identified PCs. 

This leaves us  ith the necessity to find a “link” bet een the 

PCs and the factor loadings i.e., the coefficients of the fea-

tures within the PCs.  

To aggregate the factor loadings across PCs we can either 

use the PC’s share of explained variance or the relative 

SHAP13 values. Whereas the former helps to identify the driv-

ing forces behind the model itself, the latter is focused on sin-

gle concrete forecasts. 

3.2.1 Model drivers 

The TreeMap chart below condenses the composition of the 

nine PCs based on their share in explaining the overall vari-

ance of the features to the TOP 5 model drivers14. It can be 

seen that the neighbour selection is primarily based on their 

similarity with respect to “Housing”, “Labour Market”, and “In-

dustrial production”. 

Although referring to the concrete forecast period ranging 

from mid-January 2024 to mid-February 2024, this composi-

tion proved pretty stable over time15. This is not too surprising 

as the model is updated incrementally i.e., a new observation 

added to a growing database will impact the variance decom-

position less and less. 

 
13 SHAP = SHapley Additive exPlanations leverages on findings in coop-
erative game theory and adopts Lloyd Shapley’s solution concept to find 
a fair dividing of the winnings of a game amongst its players, already 
introduced in 1951. For a few more details see grey box on this page. 

3.2.2 Forecast drivers (SHAP) 

Although it is essential to know what the model relies on in 

general additional insights can be achieved by identifying the 

drivers behind a single concrete forecast. To do so, we switch 

from the share of explained variance to relative SHAP values 

to aggregate the factor loadings across PCs. 

The SunBurst chart below reveals the neighbourhood struc-

ture behind the ML signal for the same forecast period as be-

fore16. The size of the outer segments represents the neigh-

bours’  eights in the model’s voting scheme.  

In this forecast, which favours Equities, there is a preference 

for the very recent past, as can be seen by the share of the 

years 2023 and 2022 which roughly accounts for two thirds of 

14 The TOP 5 is roughly 2.5 times as important as the remainder of the 
input features together. 
15 See chapter 3.3 The historical perspective. 
16 These are the same neighbours shown in red in the WordCloud on 
page 5. 

 

SHAP values 

In the following we directly apply the terminology from 

machine learning to briefly explain the concept.  

Again, let p be the number of features. Let x denote an 

instance with (x1, x2, …, xp). In essence, a SHAP value 

φi(f) gives the expected marginal contribution of a spe-

cific feature xi to a concrete forecast f(x).  

.φ
i
(f)  ∑

|S|! (p - |S| - 1)!

p!
S⊆{1,...,p} \ {xi}

 (f(S ∪ {xi}) - f(S)) 

S denotes a subset of features and |S| the number of 

features in this subset. f(S ∪ {xi}) is the forecast includ-

ing feature xi  and f(S) the forecast excluding feature xi. 

The sum is across all potential subsets to which feature 

xi could be added.  
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the voting17. Furthermore, the voting in favour of equities is 

fairly clear as just three of the eleven neighbours (May/2007, 

Sep/2022, and Feb/2023 ) are associated with a Government 

Bond regime. 

To identify the crucial features that led to the choice of these 

neighbours and thus to the forecast in favour of equities we 

look for some “implicit confidence” behind the forecast. It 

gives us an idea of how clear the voting result was rather than 

the forecast itself18. It can be derived from the weights19 with 

which each neighbour contributes to the voting result and 

thus, the forecast. 

The Dumbbell chart above shows the ten most relevant fea-

tures for the choice of the neighbourhood20. In this case the 

forecast drivers are more or less in line with the overall model 

drivers21 (large red dots). Yet, the comparison with the previ-

ous forecast (small grey dots) shows there was quite some 

fluctuation amongst the drivers. Furthermore, although the 

ranking of the top four remained quite stable there are some 

significant shifts in their importance (dashed arrows). The 

downward pointing triangles indicate counteracting features 

i.e., features that work in the direction of a less clear voting 

result with respect to the forecasted market phase. There 

were five counteracting features identified for the previous 

forecast but none for the current one.  

3.3 The historical perspective 

So far, our consideration represented just a snapshot or re-

ferred to a rather short period of time. To add a further layer 

 
17 In fact, the median age is slightly above one year. 
18 As our forecast are either one ore zero there is no meaningful direct 
application of SHAP values to the forecast itself. 
19 See SunBurst chart on page 6. With 82% the implicit confidence behind 
the current forecast is distinctively higher than the 30y-average of 66%. 
20 Please note that in game theory Shapley’s values sum up to the overall 
winnings of a game. This requires some kind of natural zero point i.e., if 
nobody plays nothing will be won. Such a natural zero point generally 
does not exist in the context of ML. Instead, the approach is applied to 

of interpretability we are now resorting to a broader historical 

context i.e., we analyse how neighbourhoods and model driv-

ers evolved over time. 

Expanding the view on the neighbourhoods to the past 30 

years we can find further periods with a high median age of 

the neighbourhood (e.g.: 11/2008 – 05/2010). In the period 

from 06/2020 until 05/2021 we even yielded a median age of 

slightly below 40 years (see HeatMap chart above) which co-

incides with the findings for the first half of 2022. In that re-

spect, one might conclude that the neighbourhood structures 

over the past two years, while not unique, are at least some-

how outstanding. 

The median age of all neighbours across the past 30 years is 

20 months. Thus, the age of the neighbourhood behind the 

more recent forecast discussed in 3.2 is clearly below aver-

age. In fact, just one third of all neighbourhoods in the past 30 

years was even younger. 

Model drivers pretty stable over time  

Putting the model drivers into a longer historical perspective 

(see upper HeatMap chart on the next page) we can see that 

the TOP 20 did (nearly) not change in the past two years. 

However, moving further into the past, quite some move-

ments can be observed in the lower ranks but also to some 

degree even in the top ranks22 compared to the last two years. 

That said, there always seem to be periods of two to three 

years lengths in which the structure of the PCs appears quite 

stable. After some sort of transition phase in 2020 and 2021 

deviations from an average. In our case the average probability is calcu-
lated based on the 15 years preceding the forecast under scrutiny. 
21 See TreeMap chart on page 6 
22 Please keep in mind that just the number of PCs was fixed during the 
training of the model. Their composition is of course depending on the 
data available until the query period. As the model was trained to perform 
best on average over a 30-year-period, too much variation in the top driv-
ers should not be expected. 
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we seem to have re-entered such a stable phase in the most 

recent years. From 1994 onwards “Industrial Production” 

(No.2 until 2019) and “All employees”23 (No. 1 until now) held 

the top two positions. That said, although never holding the 

top rank, it is the housing market (“ e  private housing per-

mits”, “Housing Starts”) that dominates the PC composition.  

Variability in forecast drivers distinctively 

higher 

In contrast to these findings for the model drivers the drivers 

for concrete forecasts vary substantially even over shorter pe-

riod of time (see HeatMap below). 

Although the top ranks might be quite stable for some months 

in a row the variability generally spans across all the twenty 

drivers shown in the chart above24.  .g., “ ll employees” 

holds the top rank in twelve out of twenty-four months but it 

also finds itself amongst the bottom five in eight months. 

3.4 Further Findings 

Since the voting is at the heart of the ML signal generated by 

the kNN algorithm, we dug even a bit deeper by further ana-

lysing the “implicit confidence” already used to calculate the 

SHAP values25. 

Unfortunately, an analysis of the model accuracy conditional 

on quantiles of this implicit confidence did not reveal any sta-

tistically robust relationship. i.e., a high “implicit confidence” 

does not necessarily coincide with a higher likelihood of a cor-

rect forecast. We performed similar analyses on the average 

age of the neighbourhoods. Again, no statistically robust re-

lationship could be found. 

What may seem disappointing at first glance also leaves room 

for a more constructive view when compared to traditional 

econometric approaches. In traditional econometrics, residu-

als not containing any noticeable patterns any longer are 

taken as an indication for a well specified model. Not being 

able to identify statistically robust relationships in the struc-

tures of the ML signals might thus be regarded in the same 

way. There seems to be no additional information beyond the 

signals which could be systematically taken advantage of. 

Hence, the model already appears to exhaustively exploit the 

information contained in the input features.  

4. Conclusions 

Confidence in any kind of model results is crucial, we stated 

at the beginning of this paper. Depending on the algorithm 

applied, ML needs not necessarily be a black box. In fact, the 

kNN algorithm allows for high transparency by revealing the 

structures and the drivers of the model signals. The user is 

enabled to validate his/her own view against that of the ma-

chine and thus to decide whether to make use of the signal or 

not. In that sense, the user is put into the position to perform 

a quality check before taking a decision, which was the ambi-

tion of this paper. 

As a matter of fact, the emphasis is on quality. There were no 

options detected to exploit the information behind the signals 

quantitatively. That being said, we take this as an indication 

for a sufficiently well parameterized model. 

All in, both enabling a quality check of the signals and con-

firming the model parameterization underpins our confidence 

in the model results.  

 
23 The underlying raw variable measures the total number of employees. 
24 Over the past ten years the members of the top five model drivers did 
not change whereas 35 different forecast drivers had made it into the top 
five at least once within the same period of time. 

25 See 3.2.2 Forecast drivers (SHAP) 
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